

Hvordan kan dieseleksospartikler medvirke til hjerte- og karsykdom?

Bendik Brinchmann, MD, PhD Forsker Avdeling for Luftforurensing og Støy, FHI Lege i spesialisering Bærum BUP, Vestreviken

Disposition

- Air pollution, a global health challenge
 Diesel exhaust particles (DEP), composition
 Cardiovascular disease (CVD)
- How may inhaled DEP trigger vascular effects?
 - 1. Pulmonary inflammation (systemic spill over)
 - 2. Autonomic dysfunction
 - 3. Direct vascular effects of particles or particle-associated components
- Summary

Air pollution, a global health challenge

- 91% of the worlds population live in areas with unhealthy air
- Urbanization = majority of population now live in cities

Air pollution, a global health challenge

- 6.5 million premature deaths annually
- Luftforurensing i Norge ca 1200 for tidlige dødsfall (røyking ca 6000)*
- Biggest environmental risk factor
- Ambient (outdoor) and household air pollution both contributes

Diesel exhaust contributes majorly to ambient air pollution

Ambient air pollution

Alberto Hernández

Diesel exhaust: Particulates and gases

- Particulates and reactive gases linked to vascular effects
- Focus on particulates

Modified from Münzel et al 2018

Particulate matter (PM)

PM measured according to size

- PM_{10} (<10 μ m): thoracic PM
- $\text{PM}_{10\text{-}2.5}$ (10 -2.5 μm): coarse PM
- PM_{2.5} (<2.5 μm): fine PM
- $PM_{0.1}$ (<0.1 µm): ultrafine PM (UFP)

PM_{2.5} – combustion cardiovascular disease (CVD)

Diesel exhaust particles (DEP) predominantly fine and ultrafine PM

Kittelson 1998

Diesel exhaust particles (DEP)

- Carbon core
- Adhered components: organic chemicals (DEP-OC) and metals
- Smallest particles most OC 50% of total mass
- Composition depends on temperature, fuel, engine type

Øvrevik et al

Deaths related to ambient air pollution Primarily caused by cardio vascular diseases (CVD)

Premature deaths attributed to ambient air pollution primarily caused by:

- Ischaemic heart disease (IHD)
- Stroke

Even low levels of $PM_{2.5}$ associated with CVD outcomes (<10 μ g/m³)

Lung cancer, chronic obstructive pulmonary disease (COPD) and acute lower respiratory illness (ALRI) including asthma exacerbation

Multiple exposures may interact

- Air pollution a complex mixture of gases and particles
- These toxicants may have additive or synergistic effects
- Ozone gas potentiates the effect of fine particulates substantially

Rajagopalan et al 2018

Cardiovascular disease (CVD)

- Ischaemic heart disease (IHD) and stroke largely caused by vascular pathology
- Endothelial dysfunction initial event
- Blood pressure increase
- Atherosclerosis lipid plaques due to inflammation in vascular wall
- Systemic inflammation aggravate atherosclerosis inflammatory diseases (rheumatoid arthritis) increased risk of CVD
- Plaque destabilization and rupture manifest disease

Endotelial dysfunksjon

Åreforkalkning (Aterosklerose)

- Betennelse i karveggen tiltrekker forsvarsceller (monocytter)
- Opphopning av disse cellene og fett i karveggen => Åreforkalkning
- Stabile plaque med bindevev => Angina pectoris
- Vedvarende betennelse => Plaque ruptur => Hjerteinfarkt og slag

Modified from Libby 2002

Modified from Stary et al 1995

Blood pressure

Blood pressure = cardiac output (CO) * systemic vascular resistance (SVR)

CO = heart rate * stroke volume

SVR = resistance of blood vessels

Endothelial dysfunction => Vasoconstriction => increased SVR

Constricted Artery

How do inhaled DEP contribute to CVD?

- 1. Pulmonary inflammation systemic spill-over
- 2. Autonomic nervous system dysregulation
- Direct vascular effects of particles or adhered constituents

Cellular effects of DEP

DEP and adhered components may trigger cellular effects via:

- 1. Reactive oxygen species (ROS)
- 2. Membrane receptors, transporters and channels
- 3. Intracellular receptors including aryl hydrocarbon receptor (AhR)
- 4. Altered membrane structure and function
- 5. Genotoxic effects DNA damage

Organic chemicals (OC) – central for vascular effects

- Keebaugh et al. exposed mice to concentrated ultrafine ambient particles (CAP) – accelerated atherosclerosis
- CAP thermally denuded of semi-volatile organic chemicals
- CAP without OC did not accelerate atherosclerosis development
- Bonvalot 2001: DEP-OC main drivers of epithelial inflammation
- We recently found that DEP-OC trigger endothelial cell inflammation

1. Pulmonary inflammation: systemic spill-over

- Epithelial cells and macrophages (MA) exposed to DEP
- Oxidative stress and pro-inflammatory cytokines
- Recruitment of immune-cells (neutrophils)
- Cytokines "spill over" to circulation
- Systemic oxidative stress and inflammation promotes endothelial dysfunction – BP increase and atherosclerosis

Systemic spill-over and atherosclerosis

- Systemic inflammation and reactive oxygen species (ROS) trigger endothelial dysfunction – increased adhesion (VCAM1)
- Monocytes adhere to endothelium and enter vessel wall (intima)
- Takes up oxidized low density lipoprotein => Foam cells
- Vascular inflammation => atherosclerotic plaque build up, rupture

Modified from Libby 2002

Systemic spill-over and vasoconstriction

- Endothelial cells regulates vascular tone via nitric-oxide (NO)
- Inflammation and oxidative stress => endothelial dysfunction
- Reactive oxygen species (ROS) may disturb NO signalling
- Increased vascular resistance => elevated blood pressure

How do inhaled DEP contribute to CVD?

1. Pulmonary inflammation systemic spill-over:

Systemic oxidative stress and inflammation trigger endothelial dysfunction

Vasoconstriction => elevated BP

Vascular inflammation and ROS

Foam cell accumulation – atherosclerosis Plaque rupture and thrombosis

2. Autonomic nervous system dysregulation

- Autonomic nervous system (ANS) controls heart and vasculature via sympathetic and parasympathetic
- Changes in Heart rate variability (HRV) indicates sympathetic or parasympathetic dominance

Fight or flight

Rest and digest

Particles and nerves

- Inhalation of DEP has been found to decreased HRV
- PM and DEP exposure consistently linked to BP increase
- DEP deposited in lungs affect afferent nerve endings
- May affect autonomic nervous system and thus cardiovascular control

Cellular effects – calcium channels

- DEP affects pain sensing C-fibers in airways => ANS dysfunction
- Calcium (Ca²⁺) messenger molecule, low concentration in resting state
- DEP and adhered components interact with membrane bound calcium channels such as transient receptor potential (TRP)
- Increased intracellular calcium trigger afferent nerve signal.
 Calcium signalling implicated in epithelial and endothelial effects of DEP

Particles and nerves

- UFP have been found to translocate to the central nervous system vi the olfactory bulb
- Has been suggested as a potential mechanism whereby DEP may dysregulate autonomic nervous system

2. Autonomic nervous system dysregulation

- DEP translocation via olfactory bulb or affects nerve endings via TRPs
- Autonomic nervous system dysregulation affects heart rate, volume and vascular resistance

Stapelton 2015

3. Direct vascular effects of particles or adhered constituents

- DEP or adhered constituents (organic chemicals (OC) and soluble metals) may penetrate airway epithelium and enter bloodstream
- May thus affect vasculature directly
- Endothelial dysfunction, vasoconstriction and atherosclerosis

Direct vascular effects: translocation of ultrafine particles (UFPs)

- Miller et al. exposed healthy humans to gold nano-particles; nano-particles in blood and urine 15 min, 24 h and 3 months post exposure
- Exposed mice; nano-particles accumulated in atherosclerotic plaques
- Patients at risk of stroke; gold nanoparticles detected in carotid plaques surgically removed (endarterectomy)
- Amount of nano-particles that translocate is relatively small (0,02%)

Miller et al 2017

Direct vascular effects: DEP-OC

- Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P), important group of DEP-OC
- Gerde et al. (2001) exposed dogs to particles with B[a]P
- 30 % of B[*a*]P entered blood within minutes

Aryl hydrocarbon receptor (AhR)

Intracellular receptor involved in many physiological functions Important role in xenobiotic metabolism (getting rid of toxicants) AhR may also mediate toxic effects of xenobiotics DEP-OC such as polycyclic aromatic hydrocarbons (PAHs) and dioxins bind and activate AhR

Translocation and endothelial effects of DEP-OC

We exposed a 3D tri-culture mimicking alveolus to DEP with high OC content

This induced inflammation-associated and AhR-regulated genes in endothelial cells

Clear effects on AhR-regulated genes indicates the presence of AhR-ligands in endothelial cells.

DEP-OC seemed to translocate through alveolar cells and affect endothelial cells directly DEP

Modified from Klein et al 2013

Brinchmann et al. 2018

DEP-OC extracted and analysed in North Dakota USA

Lipophilic DEP-OC induced inflammation-associated and AhR-regulated genes in endothelial cells

Endothelial cell line (HMEC-1) and primary human endothelial cells (PHEC) from 4 donors exposed to extracted DEP-OC

Lipophilic DEP-OC triggered proinflammatory responses and AhR regulated genes

Effects in PHEC at low concentrations

Inhibitors of AhR, PAR-2 as well as antioxidant treatment reduced some of the responses significantly

HMEC-1

PHEC from 4 donors

Lipophilic DEP-OC increased intracellular calcium in endothelial cells

- Intracellular calcium: a central signalling molecule kept low in resting state
- Calcium increase represents cell activation
- Lipophilic DEP-OC increased intracellular calcium in HMEC-1
- Calcium signal inhibited by blocking AhR

Human exposure study, final example

- ST-segment depression indicates myocardial ischaemia
- 20 men with prior myocardial infarction
- Exposed 1 hour to diesel exhaust or filtered air
- 15 min physical exercise
- Diesel exhaust increased ST-segment depression

Summary

- DEP linked to cardiovascular disease
 Mechanisms intensly studied last decades
- DEP may trigger cellular effects via ROS, membrane receptors, intracellular receptors, plasma-membrane and DNA damage
- Mechanisms of vascular effects:
- 1. Pulmonary inflammation and oxidative stress: systemic spill-over
- 2. Autonomic nervous system dysregulation
- 3. Direct vascular effects of particles or particle-associated components

All three mechanisms may interact

